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The problem is considered of the one-dimensional unsteady motion of 
gas forced out by a piston moving with the speed v = ct”, without con- 
sideration of the back pressure. The corresponding problem for the 
case 8 1 0, including the counter-pressure, was solved by Sedov [ 1.2 ] 
in 1945 and by Taylor 13 1 in 1946. Solutions of the problem of the 
expanding piston with speed v = eta for the three values m = - 0.5. 
- 0.1, 1 were given by Krasheninnikov [ 4 1 . 

In the present work the problem is considered for a wide range of 
the number a in order to investigate the equations for various 1. 
since it is found that depending on the ralations between v, y and a 
one obtains different pictures of the motion. If it is supposed that 
the motion of a mass of gas due to a strong explosion is simulated by 
the expansion of a cylinder or sphere with speed v = ct”. for v = 2 or 
v = 3 we obtain the solution of the problem of a strong explosion 
including the forcing out of the air by the products of explosion. 

1. In a quiescent gas let a plane piston begin to move at the initial 

moment, or the Kas begin to be displaced by a cylinder or sphere with 

speed II = ct", where m > - 1. We neglect the initial pressure p1 in the 

undisturbed gas. 'lhe equations of one-dimensional unsteady motion of an 

ideal non-heat-conducting gas have the form [ll : 

(1.1) 

where y is the adiabatic exponent, and v = 1, 2, 3 respectively for plane, 

cylindrical or spherical synvnetry. 
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From the characteristic parameters of the problem 
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[rl = L it1 = T, [p] = ML-+, [c] = LT-m-1 

it is possible to form only one dimensionless 

ctm+1 A=- 
r 

and the problem is consequently self-similar. 

V, p and p one can write the formulas [ 1 1 

combination 

(1.2) 

For the unknown functions 

v =fV(A), P = PlR (h), P = p1$w 

If we substitute u, p and p fran (1.3) into (1.1) and introduce 
of p the new function z = yP/R, the system (1.1) is transformed 
1194 1 

dz 
dV= 

z[2(V-1)4-v(y-f)V](V-m-_-)4 
(V - m - 1) [V (V - 1) (V -m-I)-(2m/y+vV)z] - 

_ z((y-l)V(V-l)(V-m-~)+22(V-m-~+m/yY_ll 
(V-m-l)[Y(V-l)(V-m-I)-(2m/y+vV)z] 

(f-3) 

in place 
into 

Cl.41 

dR 
ZV- - 

[(V -m - 1)* -21 vV 
(V-L) C.V(V-l)(V-m- l)-(2m,y+vV)z -I> (1.5) 

d)i (V-m-_-)4-z -__ 
dV 

=‘h 
V(V-l)(V-m-1)-(Zm/y+vV)z (I.61 

From the conditions on the shock wave we obtain expressions for V, 
z2 and R, behind the shock front (ahead of the front 

V 2(m+l) 
2= y+1 ’ 

,& = 2Y (Y - 1) (m + l)$ 
(Y + I)2 ’ 

We find the boundary conditions on the piston: 
dr 

v = 7;. = t . -5 V* = cP, or r.= ,--& 

From (1.2) and (1.3) we obtain 

V,=m+l, h,=m+l 

(an asterisk indicates values on the piston). 

Thus the problem is reduced to the integration of 

(1.8) 

the system of three 
ordinary differential equations (1.4)-(1.6) for the unknown functions z, 

A and R with boundary conditions (1.7) and (1.8). 

iI = z1 = 0, R,c= 1): 

R u+l -- 
2-y-l (1.7) 

t”‘+l 

2. For the solution of the problem it is necessary to carry out a 

qualitative investigation of equation (1.4) and to find from equation 
(1.6) the direction of increase of the parameter A along the integral 
curves. The straight lines V = m + 1 and z = 0 are members of the family 
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of integral curves. 

It turns out that in the region 0 < V < m + 1, z > 0 equation (1.4) 

may have the following singular points: 

O(V = 0, z = 01, a nodal point. In the neighborhood of point 

integral curves have the form 

(1) Point 

0 the 
.I 

-Pm 
v + (m + *) y 2 = CZ’I~ 

(21 Point C(V = m + 1, z = O), a complicated singular point. The 

(31 

asymptotic formula has the form 

(V-m- l)zm = Cp(m+l)[~~-my(V - m _l)]zm+v(u--lNm+l) (2.2) 

Point NV= m + 1, z = 00 1. Near this point 

(4) 

(51 

(61 

z=C(m+l - V)lm+vZl+l) 

Point E(V= - 2m/vy, 2 = 00 1 

Point G(V= 1, z = 0) 

(2.3) 

Point Fi is found as an intersection of the curves 
,,{12(V--1)+~(Y--I)~l(V-----1)-(Y--1)~(V--1)) V_,__1) 

2(V-m-t+m/y) ( 

z ~ V(V-l)(V-m---1) 
2m/y$vV 

(2.1) 

With variation of the parameter m from- 1 to 00 the character of these 

singularities changes, four characteristic cases being found. 

First case, m > 0. Points 0, C, C are nodes, D and F are saddle points, 
and point E is not singular. The integral curve of the problem of the 

piston [passing through the point (V2, z2)] enters point C, where the 

asymptote has the form 

z=C(m+l -V) zm+~~mnf~~ 

Ibe solution of the problem exists for all m. 

(2.41 

'Ihe case m = 0 was investigated by Sedov [ 1,2 1. Points 0, C and 

A(V= 0, z = 1) are nodes, and F and D are saddle points. 'lhe straight 
line V= 1 is not included in the integral curves. Since in this case 

the problem is self-similar for arbitrary pi, that is, for arbitrary zl, 

the solution of the problem in the (V, z) plane is given by an arbitrary 

segment of the integral curve between the points (1, Z) and (V,, ~~1, 

where V, and z2 are connected by the relation 
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Second case, I” < A < 0. Here 

m’= - V(Y--1) 
2+vty--1) 

(2.5) 

The points 0 and D are nodes, and E a saddle point. Three inteRra 
curves pass through point C: the straight lines V = I + 1 and z = 0 and 

a certain dividing curve entering at the angle - my/w; consequently, this 

point corresponds to two saddle points. ‘Ihere is an odd number (always 

at least one 1 of the points Fi, of which the nearest to the point C is a 

node, and the further ones alternately saddle points and nodes. For 

m = m’ -* (2.6) 

the field of integral curves coincides with the field for a strong 

explosion. ‘Ihe equation of the integral curve (coinciding in this case 

with the dividing curve entering point Cl has in the (V, z) plane the 

form111 

z = (Y;l) ~a[y-2/(2+v)l 
p / (2 + 4 Y - VI (2.7) 

For II = m’ the point (V2, z2) lies on the dividing curve, for II > A’ 
it lies between the straight line V = m + 1 and the dividing curve, and 

for A < I’ it lies between the dividing curve and the z axis. 

If y < 2, the value R = m’ does not belong to the ratqe of values of 

III considered, and the solution of the problem of the piston exists. l’he 

integral curve passes through point D. 

If y > 2, with II < I’, moving along the intemal curve from the point 

(V*, z2) in the direction of increase of the parameter A, we reach neither 
point C nor the point D, where V = a + 1; consequently the solution of 

the piston problem does not exist in this case. We devote further atten- 

tion to the case a = R’* Point F has the coordinates 

v= 2 
2+v(Y--1) ’ 

With Y = 1 or v = 2 and also 

between points E and F; with 

with point F; and with v = 3 

Consequently the solution of 

y > 7. 

z= [2+v(Y--1)1*lv+2(Y-l)1 

lVithv= 3 if y < 7, the point (V2, z,) lies 

v = 3 and y = 7, the point (V2, z2 ) coincides 

and y > 7 it lies between points F and C. 
the piston problem exists for u = 3 and 

For y > 7 the solution is 

(2.71 between the point (V,, 

given by the segnent of the integral curve 

z,) and point C; that is, it coincides with 
an appropriate solution of-the-problem of a strong explosion. l’he pressure 

and density are equal to zero on the surface of the piston; consequently, 
the piston may be replaced by an empty cavity. 

3JY (Y - 1) (Y - 2) 

For y = 7 the solution of the problem of a strong explosion is even 
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in the (V, Z) plane by the single point (Vz = 0.1, z2 = 0.21), whereas 
the solution of the piston problem is Riven by the semnt of the inte- 
gral curve (2.7) between this point and point C. At the point (V2, z,), 
A = 0; consequently the shock wave moves away at once to infinity. 

Thus, for y < 2 the solution of the piston problem exists for all III 
in the range considered. With y > 2 in the cases v = 1 or v = 2, and with 
2<y<?inthecasev= 3, it does not exist for n"< II < m*; nor does 
itwithy>7andv=3forn"<n<m',wheren'andn"are~ivenby 
(2.5) and (2.6). 

third case, a”” < RI < r’t Here 

m II) Y-& (23) 

points 0, C and D are nodes, E a saddle point, and point F is no& a 
singularity. We consider first the case y < 2. 

lhe value of the parmaeter m = I' belongs to the range of m under con- 
sideration. For this value of m the solution of the piston problem is 
given by the se-t of the integral curve (2.7) between the points (V2, 
z,) and C. However, in moving from the point (Vz, z,) to C the parameter 
X decreases. Such a family of motions represents for t < 0 the motion be- 
hind a shock front arising from a peripheral explosion. This case was 
considered by Grodzovskii [ 5 I. 

For m > m' a solution exists not only for a divergina shock wave (with 
the integral curve entering point D), but also for a conver&r one. For 
I '" < m < m' a solution exists only for a conver&r wave. ('Ihe motion 
behind the front of a converging wave for t < 0 can be regarded as arising 
frcnn a peripheral explosion with the motion of the products of explosion 
neglected). 

For y > 2 the motion involves only a converging shock wave. 

Fourth case, - 1 < m < m'ly.' Points 0 and C are nodes and D a saddle. 
'Ihe solution exists only with a conver&r shock wave. In all cases of 
converging shock waves the integral curve passes through the point C. 

Thus, from the results of the present section we can draw the follow- 
ing conclusions: 

(1) For III > m' the solution of the piston problem exists for all v 
and y. 

(2) For v = 3, y > 7 the solution of the piston problem exists also 
for m = m*. If y f 7, it coincides with the solution of the problem of 
the strong explosion. 
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(3) ‘Ihe solution of the problem of a peripheral explosion neglecting 
the motion of the products of explosion exists for - 1 < III c m”. 

(4) For y < 2 and every II there exists a solution of the piston problem 
with either a diverging or converffing shock wave. 

(5) For y > 2 and n”< I < I’ there exists no solution of the piston 
problem with either a diverging or converging shock wave. 

(6) Furthermore, for s = R’ there exists no solution or the piston 
problem with either a diver&R or converging shock wave for v = 1 or 2 or 
for v = 3, 2 < y < 7. 

Ihe first of these conclusions was obtained by Grigorian [6 1 , and 
also by Lees et al [ 7 I , who considered values of the parameter 
I’ < Is < 0. 

We note [7,8,9 1 that the problem of steady flow past a plane (v = 1) 
or axisymnetric (v = 2) slender body at high supersonic speeds is equiv- 
alent to the problem of one-dimensional unsteady motion of gas forced out 
by a plane or cylindrical piston respectively, with speed II = V tan a. 
Here the coordinate x in the stream direction must be replaced by Vt, and 
a is the angle between the stream direction and the tangent to the surface 
of the body. The solutions with converging waves five the flow past 
slender ducted bodies. 

‘Ibus for s’ < XII < 9 the piston problem considered here is equivalent 
to the problem of flow at high supersonic speeds past slender blunted 
plane profiles (v = 1) or bodies of revolution (v = 2) of the form 
r r’+! Here the shock wave is similar in form to the body. In the case 
of converging shock waves the distance from the shock wave to the axis of 
symnetry is less than the corresponding distance for the body. Grodzovs- 
kii 15 1 has considered the case of self-similar flow past a body producing 
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a parabolic shock wave x = kr*. 

3. We present some results of integrating the system of equations 
(1.4) - (1.6) with the boundary conditions (1.7) and (1.8) for values of 

IA increasing by 0.1 from- 0.9 to + 0.9 with w = 3 and y = 1.4. Fig. 1 

to 8 show graphs of the functions' v/v2, p/p,, p/p, (where the subscript 

2 indicates the characteristics of the motion imnediately behind the 

front of the shock wave). From relations (1.2) and (1.3) it follows that 

0 aa v R Aa 2 rR 
-=Tc, $=z, -f+y 

T ha 8 2 r ha -- 
Vl 0 ZgRI’ K- h a;’ ;s=5; 0 

‘Ihe graphs indicate how the characteristics of the motion depend on the 

parameter m. 

In connection with the four characteristic types of behavior of the 

integral curves considered in the previous section and the conclusions 

drawn for y < 2, we obtain three types of graphs, namely: Fig. 1 and 2 

correspond to case 1, Fig. 3-5 to case 2 and to case 3 with m' < m < m”, 
Fig. 6-8 to case 3 with m"' < m < m'and to case 4. Consequently, Fig. 
l-5 correspond to motions with diverging shock waves, and Fig. 6-8 to 

converging ones. 

Fig. 3. Fig. 4. 

It is evident from the graphs that the speed of a particle of gas 

adjacent to the piston is greater than the speed of a particle of gas 

inrnediately behind the shock wave. 'lhe relative distance between the 

shock wave and the piston (r2 - r*)/r2 depends only weakly on m, growing 
as m increases. 

As is known [l 1 , for self-similar motions the radius of the shock 
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front r2, its speed D, and the pressure p2 behind the shock front are 

determined by the formulas 

2p1 02 
m 

h- y+l 
r2=+ D drz -_ (m+l) ctm 

’ 12 =z= x2 

Hence it is clear that for m > 0 the speed D of the front' increases 
with increasing t from zero to infinity. There the counter-pressure p1 

can be neglected in comparison with the pressure p2 at the shock front 

only for large t. It is evident from the graphs that in this case the 

pressure on the piston exceeds at any time the pressure at the shock 

front. The density at the piston is infinite, the temperature is infinite- 

simally small, and the pressure is finite (Fig. 1, 2). 

For m = 0 the shock wave and piston move with constant speed. The 

pressure, density and temperature on the piston are finite. In this case 

the motion is self-similar even including the counter-pressure, since 

[cl= LT1: IpI]= ML-?', [pII= ML-1T2 and, consequently, [c21= [pl/plI. 

The solution of the problem of the motion of gas forced outwards by a 

sphere expending with constant speed was first given by Sedov [2 I in 

1945. 

For m < 0 the speed of the shock wave decreases with time from in- 

finity to zero; consequently the counter-pressure can be neglected for 

times near the beginning, when the pressure at the shock front is great. 

I I I Ir,I 
064 088 a92 B96 LO 

Fig. 5. Fig. 6. 
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Fig. 7. Fig. 8. 

For m = - 0.1, - 0.2, - 0.3, - 0.4, - 0.46, and - 0.5 (m’ < m < 0) 

the density at the piston tends to zero, the temperature to infinity, 

and the pressure is finite (Fig. 3-5). For m = - 0.1 the pressure on the 

piston is greater than at the shock wave; in the other cases it is less. 

For m = - 0.6, - 0.7, - 0.8, - 0.9 (- 1 < m < m’) a different picture 

of the flow is obtained. In this range of the parameter m the radius r2 

of the shock wave is smaller than the radius of the piston r*; that is, 

A, > m + 1. Gxsequently the speed of the shock wave 

D = (m + 1)/ ctm hz<p* = ctm 

is less than the speed of the piston. 

In this case one must suppose that the mass of gas occupies the 

exterior of the sphere of radius 

CP 
r*=-. 

m+l 

expanding in the course of time. 'Ihe shock wave 1~s behind the piston. 

'Ihe disturbed motion occupies the region 

and inside the sphere of radius 

CP 
r2 = ha 

the gas is at rest, the pressure is equal to zero, and the density is the 

initial density pl. 'Ihe density on the piston is infinite, the tempera- 

ture is equal to zero, and the pressure is finite (Fig. 6-R). 

As was mentioned in the preceding section, such a motion can be 
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regarded as arising for t < 0 from a peripheral explosion with neglect 
of the motion of the products of explosion. 

For R= - 0.6 the calculation was made using formulas giving the f Act 
solution of the problem of a strong explosion. (We note that the np .rical 
values of the characteristics of the motion in the case m = - 0.6 .o not 
agree with the values obtained in Ref. 5). 
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